On n-superharmonic functions and some geometric applications
نویسندگان
چکیده
Abstract In this paper we study asymptotic behaviors of n -superharmonic functions at singularity using the Wolff potential and capacity estimates in nonlinear theory. Our results are inspired by extend [6] Arsove–Huber [63] Taliaferro 2 dimensions. To use a new notion thinness terms -capacity motivated type Wiener criterion [6]. [63], employ Adams–Moser–Trudinger’s inequality for potential, which is used [15] Brezis–Merle. For geometric applications, end complete conformally flat manifolds as well properly embedded hypersurfaces hyperbolic space. These applications seem to elevate importance -Laplace equations make closer tie classic analysis developed conformal geometry general
منابع مشابه
SUPERHARMONIC functions on foliations
We use techniques from geometric analysis to prove that any positive, leafwise superharmonic, measurable function on a Riemannian measurable foliation with transverse invariant measure, finite total volume and complete leaves is, in fact, constant on a.e. leaf.
متن کاملOn definitions of superharmonic functions
© Annales de l’institut Fourier, 1975, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملIntegrability of Superharmonic Functions and Subharmonic Functions
We apply the coarea formula to obtain integrability of superharmonic functions and nonintegrability of subharmonic functions. The results involve the Green function. For a certain domain, say Lipschitz domain, we estimate the Green function and restate the results in terms of the distance from the boundary.
متن کاملOn the mean value property of superharmonic and subharmonic functions
Recall that a function u is harmonic (superharmonic, subharmonic) in an open set U ⊂ Rn (n ≥ 1) if u ∈ C2(U) and Δu = 0 (Δu ≤ 0,Δu ≥ 0) on U . Denote by H(U) the space of harmonic functions in U and SH(U) (sH(U)) the subset of C2(U) consisting of superharmonic (subharmonic) functions in U . If A ⊂ Rn is Lebesgue measurable, L1(A) denotes the space of Lebesgue integrable functions on A and |A| d...
متن کاملOn multiplicative λ-approximations and some geometric applications
Let F be a set system over an underlying finite set X, and let μ be a nonnegative measure over X. I.e., for every S ⊆ X, μ(S) = ∑ x∈S μ(x). A measure μ ∗ on X is called a multiplicative λ-approximation of μ on (F , X) if for every S ∈ F it holds that aμ(S) ≤ μ∗(S) ≤ bμ(S), and b/a = λ ≥ 1. The central question raised and partially answered in the present paper is about the existence of meaningf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2021
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-021-02105-3